
Auto-correlation (Wiener-Khinchin’s theorem)

The autocorrelation, R(x), of a function, f (x), is defined as

R(x)≡
∫ ∞

−∞
f (y) f (y+x)dy. (1)

Recalling that the convolution between f (x) and g(x) is defined as

f (x)∗g(x)≡
∫ ∞

−∞
f (x−y)g(y)dy (2)

it can be shown, by setting g(x)≡ f (−x), that

R(x) = f (x)∗ f (−x). (3)

According to the Fourier convolution theorem,

F ( f (x)∗g(x)) = F(ω)G(ω). (4)

G(ω) =
∫ ∞

−∞
g(x)e−iωxdx (5)

=
∫ ∞

−∞
f (−x)e−iωxdx (6)

=
∫ ∞

−∞
f (x)eiωxdx (7)

= F(ω). (8)

It then follows

F (R(x)) = F(ω)F(ω) (9)

= |F(ω)|2 (10)

= P(ω). (11)

i.e., the Fourier transform of the autocorrelation function is the power spectrum, P(ω). This is known as the Wiener-
Khinchin’s theorem.
Using the autocorrelation function to obtain the power spectrum is preferred over the direct Fourier transform as most
of the signals have very narrow bandwidth.
If P(ω) is independent of the frequency, it is called white noise. If P(ω) is proportional to 1/ f (= 1/ω), the original
data is called pink noise, 1/ f noise or fractal noise and if P(ω) is proportional to 1/ f 2, it is called brown noise.

Application to Differential Equations

Diffusion equation

The governing equation for the diffusion equation (transient heat conduction) is

∂u(x, t)
∂ t

=
∂ 2u(x, t)

∂x2 , (12)

with the initial condition of

u(x,0) = f (x), (13)

and x is defined over the entire range of (−∞,∞). Because of the range given, Fourier transforms should be employed.
By Fourier transforming eq.(12), one can obtain



∂U(ω, t)
∂ t

= (iω)2U(ω, t), (14)

where U(ω) is the Fourier transform of u(x, t). Equation (14) can be solved as

U(ω, t) = A(ω)exp(−ω2t). (15)

The inverse Fourier transform of eq.(15) is

u(x, t) =
1

2π

∫ ∞

−∞
U(ω, t)eiωxdω (16)

=
1

2π

∫ ∞

−∞
A(ω)exp(−ω2t)eiωxdω. (17)

The initial condition of eq.(13) at t = 0 is now incorporated as

f (x) =
1

2π

∫ ∞

−∞
A(ω)eiωxdω, (18)

which implies that A(ω) is the Fourier transform of f (x),i.e.

A(ω) = F(ω). (19)

Hence the solution to eq.(12) with the initial condition of eq.(13) in the frequency domain is

U(ω, t) = F(ω)exp(−ω2t). (20)

Using the Fourier convolution theorem, eq.(20) can be inverted as

u(x, t) = f (x)∗F−1(
exp(−ω2t)

)
. (21)

Enter Exp[- w2 t] and w in the boxes above and press the button. Verify that you get

F−1(
exp(−ω2t)

)
=

1

2
√

πt
exp

(
−x2

4t

)
. (22)

so

u(x, t) =
(

1

2
√

πt

)
exp(−x2

4t
)∗ f (x) (23)

=
(

1

2
√

πt

)∫ ∞

−∞
exp

(
− (x−y)2

4t

)
f (y)dy. (24)

If the initial condition is given by the Dirac delta function as

f (x) = δ (x), (25)

eq.(24) becomes

u(x, t) =
(

1

2
√

πt

)∫ ∞

−∞
exp

(
− (x−y)2

4t

)
δ (y)dy (26)

=
(

1

2
√

πt

)
exp

(
−x2

4t

)
. (27)

The animated graph below shows how diffusion process progresses as time goes by.



Fourier series solution

If the interval is finite, say−π < x< π , instead of (−∞,∞), the solution can be expressed by the Fourier series instead
of the Fourier transforms as

u(x, t) =
∞

∑
m=−∞

umeimx, (28)

where um are unknown Fourier coefficients.
Noting that

u′′(x, t) =
∞

∑
m=−∞

(im)2umeimx, (29)

and

∂u
∂ t

=
∞

∑
m=−∞

dum

dt
eimx, (30)

so the governing equation of ∂u/∂ t = ∂u2/∂x2 becomes

∞

∑
m=−∞

dum

dt
eimx =

∞

∑
m=−∞

(−m2)umeimx, (31)

or

dum

dt
=−m2um, (32)

which can be solved as

um = Amexp(−m2t), (33)

thus

u(x, t) =
∞

∑
m=−∞

umeimx (34)

=
∞

∑
m=−∞

Amexp(−m2t)eimx. (35)

The initial condition that at t = 0, u = f (x) is now incorporated as

f (x) =
∞

∑
m=−∞

Ameimx, (36)

which implies that Am is the Fourier coefficient of f (x) so

Am = fm (37)

=
1

2π

∫ π

−π
f (x)e−imxdx, (38)

thus

u(x, t) =
∞

∑
m=−∞

fmexp(−m2t)eimx. (39)



Convolution theorem for Fourier series

(Definition: Fourier series convolution)

f ∗g≡ 1
2π

∫ π

−π
f (x−y)g(y)dy (40)

(Convolution theorem)

fmgm =
1

2π

∫ π

−π
f ∗ge−imxdx, (41)

or

f ∗g =
∞

∑
m=−∞

fmgmeimx (42)

x Cm

f (x) fm
g(x) gm

f ∗g fmgm

Parseval’s theorem for Fourier series

The Fourier and inverse Fourier transform formulas are given as

f (x) =
∞

∑
m=−∞

Cmeimx, (43)

Cm =
1

2π

∫ π

−π
f (x)e−imxdx, (44)

from which

f (x) f (x) =
∞

∑
m=−∞

∞

∑
n=−∞

CmCneimxe−inx (45)

Integrating the both sides gives

∫ π

−π
f (x) f (x)dx =

∞

∑
m=−∞

∞

∑
n=−∞

CmCn

∫ π

−π
eimxe−inxdx (46)

=
∞

∑
m=−∞

∞

∑
n=−∞

CmCn

∫ π

−π
ei(m−n)xdx (47)

= 2π
∞

∑
m=−∞

|Cm|2, (48)

where ∫ π

−π
eimxe−inxdx=

{
0 m 6= n

2π m= n

was used.
Hence the Parseval’s theorem for Fourier series is stated as

∫ π

−π
{ f (x)}2dx= 2π

∞

∑
m=−∞

|Cm|2. (49)

Example



1

-1

π−π

Cm =
1

2π

∫ π

−π
f (x)e−imxdx (50)

=
1

2π

(∫ 0

−π
(−1)e−imxdx+

∫ π

0
(+1)e−imxdx

)
(51)

=
1
π

(
(−1)m−1

m

)
i, (52)

so

|Cm|2 =
((−1)m−1)2

π2m2 , (53)

or

|Cm|2 =

{
4

π2
1

(2m−1)2 m=±1,±3,±5, . . .

0 m= 0,±2,±4,±6, . . .
(54)

Hence, eq.(49) becomes

2π = 2π
∞

∑
m=−∞

4
π2

1
(2m−1)2 (55)

from which one obtains
1
12 +

1
32 +

1
52 +

1
72 + . . . =

π2

8
. (56)


